
Graphical User Interfaces in Dynamic Software
Product Lines

Dean Kramer, Samia Oussena, Peter Komisarczuk
School of Computing and Technology

University of West London
London, United Kingdom

firstname.lastname@uwl.ac.uk

Tony Clark
School of Engineering and Information Sciences

Middlesex University
London, United Kingdom

t.n.clark@mdx.ac.uk

Abstract—Dynamic Software Product Line Engineering has
gained interest through its promise of being able to unify software
adaptation whereby software can be configured at compile time
and runtime. While previous work has concentrated on language
support and other platform support, little attention has been
placed on graphical user interface variability. In this paper,
we present the motivation for handling dynamic graphical user
interface variability and the challenges that require tackling to
enable this.

Index Terms—Software Product Line Engineering, Dynamic
Software Product Lines, Graphical User Interfaces

I. INTRODUCTION

Smart phones in recent years have seen high proliferation,
allowing more users to stay productive while away from the
desktop. It has become highly predictable for these devices to
have an array of sensors including GPS, accelerometers, digital
compass, proximity sensors, sound etc. Using these sensors
with other equipment already found in phones, a wide set of
contextual information can be acquired.

This contextual information can be used in Context-Aware
Self Adaptive (CASA) software. This software can monitor
different contextual parameters and dynamically adapt at run-
time to satisfy the user’s current needs [1]. These behavioural
variations can be seen to share similarities with features in
Software Product Lines (SPL), where product commonality
and variability is handled, providing higher asset reuse. Within
SPLs, Feature Oriented Software Development (FOSD) has
emerged as a method for modularising the features of a
system [2]. The one fundamental difference between these
two concepts is that while SPLs conventionally manage static
variability which is handled at compile time, adaptive software
requires dynamic variability to be handled at runtime.

Dynamic Software Product Lines (DSPL) enables the SPL
to be reconfigurable at runtime [3]. By using DSPLs, vari-
ability can be static, adapted at compile time, or dynamic
and adapted at runtime. This allows for greater reuse as
variability can be implemented for both static and dynamic
adaptation, as different products may require the adaptation to
be applied at different times [4]. Previous work has enabled the
program logic refinements to be handled at runtime, but there
is little known how to handle graphical user interface (GUI)
variability statically or dynamically. In this paper, we consider

the problem of GUI variability in the context of DSPLs and
explore some of the challenges that require attention, and
provide insight into our research direction.

The remainder of this paper is structured as follows: Mo-
tivation to our research is presented in Section 2. In Section
3, we outline the challenges we aim to tackle in our research.
Related work is then discussed in Section 4. Final discussion
and conclusion is then presented in Section 5.

II. MOTIVATION

When using SPLs, variability and commonality are ex-
pressed in terms of features. A feature of an SPL has been
defined as ”a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems” [5].
Features can be implemented in feature modules, incrementing
software functionality [6], by extending the base feature of a
program with additional logic.

Functionality in terms of program logic may not be the
only crosscutting software artefact in a SPL. Just like specific
business logic may be associated with a given feature, so too
can GUIs or GUI refinements. By handling GUI variability
within features, greater reuse can be achieved with this type
of artefact.

Unlike conventional SPLs, DSPLs can reconfigure at run-
time, driven by context changes. Context can be described as
”information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves”
[7]. On reconfiguration, the running application is altered by
the addition and removal of program logic. Additionally the
GUI may need to be altered to suit the new configuration.
Without altering the GUI, events caused by user interaction
are altered without the user being aware. By altering the GUI
also, the user can be more aware about how the action has
changed due to a context change.

A. Scenario Application

To illustrate our motivation, consider a content store applica-
tion for a mobile device as an example DSPL. This application
may provide different content for the user including applica-
tions, movies, music etc. Different content is organised into

978-1-4673-6449-2/13 c© 2013 IEEE PLEASE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

25



Fig. 1. Scenario Application

different categories. A simplified feature model of the DSPL
can be seen in Figure 1. This application provides content for
different age groups, and also the application can be tailored
to suit these different groups.

Different contexts can affect this system, including contexts
regarding the user, including age, and user preferences. Other
contexts that can affect the system include device contexts,
including connection type currently active, and amount of
storage available on the device. As an example, if the current
level of free storage on the device is below a particular level,
content is streamed and is not downloadable. This change
should be reflected in the GUI by only having a streaming
button visible. Also, distribution of certain content types may
not be allowed in certain counties, because of content licensing
etc. Because of this, the GUI can be changed to represent that,
by only having buttons for content types that are available.
Lastly, since this store can bring content to multiple age
groups, depending on the age group, different GUI styles can
be used and content that is available to them.

III. CHALLENGES

As stated above, DSPL work has predominantly investigated
how to handle logic changes. Therefore the methods used are
not well suited to GUI variability. In this section we outline
the main challenges that our research attempts to resolve.

A. GUI Implementation

In mobile and web application development, it is common
to not have the entire application developed using a single
language or technology. Because of the heterogeneous nature
of mobile devices, it is suggested that GUIs should not
be programmed along with business logic. This is to help
alleviate some of the difficulties resulting from tailoring to
suit multiple device screen sizes and device capabilities. Also,
when developing user interfaces along with business logic,
code is less maintainable and is harder to reuse when interface
elements can be reused in multiple places of an application.

To improve this maintainability and reuse, the Model-
View-Controller pattern has been proposed. The Model-View-
Controller (MVC) design pattern [8] aims to improve devel-

opment of graphical applications by separating data from its
representation, and how the user interacts with it.

Within recent years, we have seen the emergence of GUI
representation being implemented using documents instead of
code [9]. Using this approach, GUI representation is imple-
mented in a more declarative fashion, commonly in markup
based languages [10]. Examples of these languages includes
Mozilla XUL, QML used in QT, Microsoft XAML, Apple
Nib, and Android XMLBlock.

In existing approaches, unified refinement implementation
has been proposed [4], [11]. This allows the developer to
implement variability using a single technique or technology,
which then can be composed statically or dynamically. The
same should be true also for GUIs, whereby a single refine-
ment can be applied statically at compile time or dynamically
at runtime, without the need for a different implementation
technique or technology. Our goal is to achieve this, while
using GUI documents in the implementation.

B. Composition Approaches

When considering these user interfaces, one challenge is
how composition should be carried out. For composition we
see predominantly four different paths including compile-time,
runtime, pattern and code transformation, and a hybrid of
paths.

Compile-time composition is the process of deriving all
foreseeable variations of a given resource at or before applica-
tion compilation. Then at runtime, when a given GUI resource
is needed, depending on the DSPL configuration, the correct
resource variant is used. Using this method, mainly different
variations of the same GUI are added to the application to
be chosen at runtime. While this method can lead to faster
reconfiguration, because no composition is required, it can
lead to potential scalability issues regarding the time it takes
to compile the application, and also the size of the application
if a product contains a high amount of variability.

Runtime composition is the process of deriving a correct
variation of a given GUI resource at runtime. By using
runtime composition, the program is compiled with the GUI
refinements for each of the selected features. Then at runtime,
depending on the configuration, each of the refinements from
the active features are composed together to obtain that GUI.
This method unlike the compile-time method removes the
possible exponential amount of GUI variations needing to be
installed with the program. On the other hand, there is then
a static overhead involved in this method, because all tools
needed to compose the artefacts need to be included with the
application. Also, with some platforms, some GUI artefacts
require preprocessing during compilation, therefore requiring
these be included too, which in some cases is not possible due
to proprietary development kits.

While the MVC pattern can aid the developer by enabling
separation of concerns and easier maintainability, it is not the
only way a GUI can be created. Many platforms do allow GUI
creation in the application programming language. Because of
this we can transform the MVC pattern to the Model-View

26



(MV) pattern. By transforming this pattern, we have to process
that GUI refinement and output the appropriate code. This
code can then be included in the controller implementation.
While this method will not incur the application size bloating
found in the compile-time method, or the overhead seen in the
runtime composition method, there are other potential issues
regarding how the application handles multiple screen types,
lack of software reuse, and platform compatibility.

Finally, it is possible to foresee a hybrid approach that
combines more than one of the previous stated methods. Using
this method, we can combine for example compile-time and
pattern transformation to be capable of handling different
configuration timing, a challenge discussed next. This method
also may prove a method of reducing some of the exponential
bloat caused by a purely compile-time only approach.

C. Configuration Timing

When a DSPL configuration alters, the running application
is adapted. In previous work this has been handled either by the
weaving or removing aspects [12], adding or removing decora-
tors [11] etc. These changes are carried out straight away and
can affect the system at the moment of reconfiguration. With
GUI changes, depending on the granularity of the changes, it
may not be best for every refinement to be added at anytime.

Within the lifecycle of a GUI, there are two main phases in
which a refinement should be applied, on inflation or while it
is active. The inflation of a GUI can be regarded as when the
GUI is being constructed during the transition from one screen
to another. An example taken from the scenario is a transition
going from a screen showing a list of Horror movies to a
screen showing the detail for a movie chosen from that list.
In contrast, the active phase of a GUI is while the screen or
GUI is currently active and visible to the user.

If we consider the scenario application presented earlier,
when buying content that cannot be instantly downloaded
because of its size and the device connection type, it could
be useful for instead of just altering the behaviour of the
download button, but to also update its label to represent the
altered behaviour.

D. GUI Checking

As the MVC pattern proposes the separation of the model,
view, and controller, this means that there are multiple linked
artefacts that may contain variability. Because of this, it is
important to make sure that no inconsistencies between the
different elements occur. Examples of these errors include
attempting to add an event listener to a non existent button,
attempting to alter the appearance of GUI element, or even
declaring an event listener that is not implemented within that
controller. These can happen due to view lookups not being
statically checked at compilation.

While checking for program bugs is an important aspect,
the GUI should also be checked for unintended and unwanted
changes. Examples of these types of unwanted changes include
elements being moved to unwanted places because the addition
or removal or a GUI widget. This type of check has become

a research interest in Feature Oriented Programming (FOP).
Methods of product verification have been proposed in FOP
including the use of the Java Modelling Language (JML)
[13]. By using JML, formal program specifications within the
source code could be added, particularly allowing the addition
of method contracts and class invariant. Method Contracts
consist of preconditions that state what the method caller needs
to ensure, and the post conditions that state what the method
needs to ensure. Class invariants are properties that need to
be maintained. Following this approach, there is room to see
if a similar method can be applied across multiple differing
document types.

IV. RELATED WORK

Some work has looked at the variability of user interfaces,
but GUI research within the scope of SPLs has been limited.
In [14], a case study was carried out to investigate the
GUI variability found in a commercial web-based information
system. An analysis tool based on Selenium was used to
extract data from the HTML and CSS documents mapping
elements to the reference application. Their results show large
amounts of non trivial variability in the GUIs, of which much
could not be handled by stylesheet changes, with not one GUI
element being used.

Other work considers how to re-engineer configurators
[15]. In this work, the authors present challenges regarding
the reverse engineering of existing configurators analysing
GUI, webpage source, and code base to extract variability
information. The second challenge was then regarding forward
engineering and generating a tailored GUI and codebase.

To summarise, little attention has been paid to GUI variabil-
ity, while what work has been done, has been a concentration
only on static variability. In our research we wish to go further,
and achieve the ability of handling this variability statically
and dynamically.

A. DSPL Implementation Support

There has been two main methods proposed to help support
DSPL implementation, by language extensions, or by larger
services and component architectures.

Language support including Feature Oriented Programming
(FOP) languages like FeatureC++ [11] have been proposed.
In FeatureC++, logic within the dynamic feature modules is
modularised using the decorator pattern. Using this pattern,
decorators wrap classes at runtime to alter the behaviour of an
application. Other work has included the emergence of Delta-
Oriented Programming (DOP), particularly DeltaJava [16]
and its dynamic form, Dynamic Delta Oriented Programming
(DDOP) [17]. In DOP, feature refinements are implemented in
Delta Modules. A delta module though similar to feature mod-
ules in that it can increment a base program functionality, it
can also remove functionality. Delta Modules are implemented
as single files, instead of each class refinement being a class
file as in FOP.

While these language extensions bring very good support
for runtime business logic and class member changes, they

27



support a single language only. Our work aims at considering
GUI implementation using multiple languages, including GUI
documents.

Service Oriented Architectures (SOA) recently has been a
popular domain for DSPL research [4], [18], [19]. In [18], a
mobile DSPL was proposed, but only considers GUI during
screen transitions, and has no consideration for MVC pattern.
Parra proposed a unified approach to implementing logic
variability in [4], whereby it should not matter if the variability
is compile time or runtime, it should be seen and implemented
as the same, an approach we intend to follow for the GUI.

Other more general FOSD language tools included Feature-
House [20], which brings FOSD to multiple languages and
artefacts. FeatureHouse also does not require specific new
keywords and syntax that is required by other FOP and DOP
languages. Furthermore, FeatureHouse can be extended to new
languages by providing a language grammar in FeatureBNF.
This solution allows greater support for handling different
languages and documents but has only been used at compile
time, not at runtime.

V. DISCUSSION AND CONCLUSION

This paper discusses the need to handle graphical user
interface (GUI) variability at runtime in dynamic software
product lines (DSPL), and its related challenges. A tool for
handling compile-time composition has been implemented
to produce all runtime variations of the GUI layouts, but
it currently does not handle different configuration times,
only functioning at GUI inflation and not while the screen
is active. Configuration timing is planned to be bound to
features via feature attributes, using extended feature models.
Then when the DSPL product is compiled, depending on
the configuration timing, different code is generated for the
respective controllers to handle these changes. Active time
configuration using runtime or compile-time composition will
require the screen to re-inflate. Consideration will need to be
taken to avoid GUI state loss on re-inflation.

Our next plan is to develop a tool to handle pattern transfor-
mation, taking GUI refinements and generate the code needed
to create the GUI directly in the controller including all refer-
ences to event listeners. To handle the different configuration
times, logic will have to be generated to add, remove, and
alter GUI elements within the view hierarchy. Following this
we want to compare each of the approaches using a case study.
We believe that with this research we can improve how GUIs
are implemented and handled in a DSPL.

REFERENCES

[1] L. M. Daniele, E. Silva, L. F. Pires, and M. Sinderen, “A soa-based
platform-specific framework for context-aware mobile applications,” in
Enterprise Interoperability, ser. Lecture Notes in Business Information
Processing, W. Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw,
C. Szyperski, R. Poler, M. Sinderen, and R. Sanchis, Eds. Springer
Berlin Heidelberg, 2009, vol. 38, pp. 25–37.

[2] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling step-wise refine-
ment,” IEEE Trans. Softw. Eng., vol. 30, pp. 355–371, June 2004.

[3] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software
product lines,” Computer, vol. 41, pp. 93–95, April 2008.

[4] C. Parra, “Towards dynamic software product lines: Unifying design
and runtime adaptations,” Ph.D. dissertation, INRIA Lille Nord Europe
Laboratory, March 2011.

[5] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report
CMU/SEI-90-TR-21, 1990.

[6] M. Rosenmuller, “Towards flexible feature composition: Static and
dynamic binding in software product lines,” Ph.D. dissertation, Otto-
von-Guericke-University Magdeburg, June 2011.

[7] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, ser. HUC ’99. London, UK:
Springer-Verlag, 1999, pp. 304–307.

[8] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[9] D. Draheim, C. Lutteroth, and G. Weber, “Graphical user interfaces
as documents,” in Proceedings of the 7th ACM SIGCHI New Zealand
chapter’s international conference on Computer-human interaction:
design centered HCI, ser. CHINZ ’06. New York, NY, USA: ACM,
2006, pp. 67–74.

[10] J. Kim and C. Lutteroth, “Multi-platform document-oriented guis,” in
Proceedings of the Tenth Australasian Conference on User Interfaces
- Volume 93, ser. AUIC ’09. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., 2009, pp. 27–34. [Online].
Available: http://dl.acm.org/citation.cfm?id=1862703.1862707

[11] M. Rosenmüller, N. Siegmund, M. Pukall, and S. Apel, “Tailoring
dynamic software product lines,” SIGPLAN Not., vol. 47, no. 3, pp.
3–12, Oct. 2011.

[12] C. Parra, X. Blanc, and L. Duchien, “Context awareness for dynamic
service-oriented product lines,” in SPLC ’09: Proceedings of the 13th
International Software Product Line Conference. Pittsburgh, PA, USA:
Carnegie Mellon University, 2009, pp. 131–140.

[13] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel, “Family-
based deductive verification of software product lines,” in
Proceedings of the 11th International Conference on Generative
Programming and Component Engineering, ser. GPCE ’12. New
York, NY, USA: ACM, 2012, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/2371401.2371404

[14] A. Pleuss, B. Hauptmann, M. Keunecke, and G. Botterweck, “A case
study on variability in user interfaces,” in Proceedings of the 16th
International Software Product Line Conference - Volume 1, ser. SPLC
’12. New York, NY, USA: ACM, 2012, pp. 6–10.

[15] Q. Boucher, E. Abbasi, A. Hubaux, G. Perrouin, M. Acher, and
P. Heymans, “Towards more reliable configurators: A re-engineering
perspective,” in Product Line Approaches in Software Engineering
(PLEASE), 2012 3rd International Workshop on, june 2012, pp. 29 –32.

[16] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented
programming of software product lines,” in Proceedings of the 14th
international conference on Software product lines: going beyond, ser.
SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 77–91.

[17] F. Damiani and I. Schaefer, “Dynamic delta-oriented programming,” in
Proceedings of the 15th International Software Product Line Conference,
Volume 2, ser. SPLC ’11. New York, NY, USA: ACM, 2011, pp. 34:1–
34:8.

[18] F. Marinho, F. Lima, J. Ferreira Filho, L. Rocha, M. Maia, S. de Aguiar,
V. Dantas, W. Viana, R. Andrade, E. Teixeira, and C. Werner, “A
software product line for the mobile and context-aware applications
domain,” in Software Product Lines: Going Beyond, ser. Lecture Notes
in Computer Science, J. Bosch and J. Lee, Eds. Springer Berlin /
Heidelberg, 2010, vol. 6287, pp. 346–360.

[19] H. Gomaa and K. Hashimoto, “Dynamic software adaptation for service-
oriented product lines,” in Proceedings of the 15th International Soft-
ware Product Line Conference, Volume 2, ser. SPLC ’11. New York,
NY, USA: ACM, 2011, pp. 35:1–35:8.

[20] S. Apel, C. Kastner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 221–231.

28


